Predicting infinite dilution activity coefficients of organic compounds in water by quantum-connectivity descriptors

نویسندگان

  • Ernesto Estrada
  • Gerardo Díaz
  • Eduardo J. Delgado
چکیده

Quantitative structure-property relationship (QSPR) models are developed to predict the logarithm of infinite dilution activity coefficient of hydrocarbons, oxygen containing organic compounds and halogenated hydrocarbons in water at 298.15 K. The description of the molecular structure in terms of quantum-connectivity descriptors allows to obtain more simple QSPR models because of the quantum-chemical and topological information coded in this type of descriptors. The models developed in this paper have fewer descriptors and better statistics than other models reported in literature. The current models allow a more transparent physical interpretation of the phenomenon in terms of intermolecular interactions which occur in solution and which explain the respective deviations from ideality.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Application of Genetic Programming in Predicting Infinite Dilution Activity Coefficients of Organic Compounds in Water

In this paper, we calculated 37 structural descriptors of 174 organic compounds. The 154 molecules were used to derive quantitative structure – infinite dilution activity coefficient relationship by genetic programming, the other 20 compounds were used to test the model. The result showed that molecular partition property and three-dimensional structural descriptors have significant influence o...

متن کامل

Estimation of Infinite Dilution Activity Coefficients of Organic Compounds in Water with Neural Classifiers

A new approach is presented for the development of quantitative structure–property relations (QSPR) based on the extraction of relevant molecular features with self-organizing maps and the use of a modified fuzzy-ARTMAP classifier for variable prediction. The present methodology is demonstrated for the development of a QSPR for the aqueous-phase infinite dilution activity coefficient , based on...

متن کامل

Solubility of Organics in Water and Silicon Oil: A Comparative Study

The aim of this study was to compare the solubility of selected volatile organic compounds in water and silicon oil using the simple static headspace method. The experimental design allowed equilibrium achievement within 30 – 60 minutes. Infinite dilution activity coefficients and Henry’s law constants for various organics representing esters, ketones, alkanes, aromatics, cycloalkanes and amine...

متن کامل

QSAR analysis of soil sorption coefficients for polar organic chemicals: substituted anilines and phenols.

Based on descriptors of n-octanol/water partition coefficients (logKow), molecular connectivity indices, and quantum chemical parameters, several QSAR models were built to estimate the soil sorption coefficients (logKoc) of substituted anilines and phenols. Results showed that descriptor logKow plus molecular quantum chemical parameters gave poor regression models. Further study was performed t...

متن کامل

Application of a General Computer Algorithm Based on the Group-Additivity Method for the Calculation of Two Molecular Descriptors at Both Ends of Dilution: Liquid Viscosity and Activity Coefficient in Water at Infinite Dilution.

The application of a commonly used computer algorithm based on the group-additivity method for the calculation of the liquid viscosity coefficient at 293.15 K and the activity coefficient at infinite dilution in water at 298.15 K of organic molecules is presented. The method is based on the complete breakdown of the molecules into their constituting atoms, further subdividing them by their imme...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Journal of computer-aided molecular design

دوره 20 9  شماره 

صفحات  -

تاریخ انتشار 2006